Deviation from the Unimolecular Micelle Paradigm of PAMAM Dendrimers Induced by Strong Interligand Interactions

نویسندگان

  • Bo Wang
  • Nicholas K. Geitner
  • Thomas P. Davis
  • Pu Chun Ke
  • David A. Ladner
  • Feng Ding
چکیده

PAMAM (polyamidoamine) dendrimers have been recently exploited as efficient and biocompatible unimolecular micelles for oil spill remediation utilizing their robust encapsulation capability. However, experimental evidence suggested that contrasting dispersion mechanisms of PAMAM exist toward different types of hydrocarbon ligands, including linear and polyaromatic oil molecules. Specifically, the dispersion of linear hydrocarbons by PAMAM was found to violate the unimolecular micelle convention by forming molecular complexes orders of magnitude larger than a single PAMAM. It is, therefore, essential to re-examine the dispersion mechanisms of PAMAM toward different types of ligands in order to facilitate dendrimer applications in environmental remediation, catalysis, and nanomedicine. Here, we applied atomistic discrete molecular dynamics simulations to study generation-four (G4) PAMAM dendrimers dispersing hexadecane (C16) and phenanthrene (PN), two representative linear and polyaromatic hydrocarbons in crude oil. We observed a strong cooperativity in the binding of both C16 and PN to PAMAM dendrimers, especially with C16. Simulations of multiple PAMAM molecules interacting with many hydrocarbons illustrated that phenanthrene bound to individual dendrimers to render a unimolecular micelle, while multiple C16 molecules formed a large droplet enclosed and stabilized by multiple PAMAM dendrimers to assemble into a multimolecular micelle. Our analysis revealed that such deviation of the PAMAM−ligand architecture from the conventional unimolecular micelle paradigm arose from strong interligand interactions between linear hydrocarbons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Studies on incorporating small fluorescent molecules into PAMAM dendrimers.

Dendrimers are a relatively new class of polymer, with well-defined molecular structures. They are synthesized from a polyfunctional core by adding branched monomers that react with the functional groups of the core, in turn leaving end groups that can react again. This results in a large number of reactive terminal groups that increases after each cycle or " generation ". The structure of a gi...

متن کامل

Interplay of Oxidative Stress and Autophagy in PAMAM Dendrimers-Induced Neuronal Cell Death

Poly-amidoamine (PAMAM) dendrimers are proposed to be one of the most promising drug-delivery nanomaterials. However, the toxicity of PAMAM dendrimers on the central nervous system seriously hinders their medical applications. The relationship between oxidative stress and autophagy induced by PAMAM dendrimers, and its underlying mechanism remain confusing. In this study, we reported that PAMAM ...

متن کامل

Interaction between polyamidoamine (PAMAM) dendrimers and bovine insulin.

OBJECTIVE In this study the mechanism of interactions between polyamidoamine (PAMAM) dendrimers and bovine insulin was examined. The insulin is a 51 amino acid peptide-hormone involved in the homeostasis of blood glucose levels. This molecule consists of two chains - A and B - linked by two disulphide bridges. As insulin contains four tyrosine residues it was possible to evaluate dendrimers eff...

متن کامل

Electron Capture Dissociation, Electron Detachment Dissociation, and Collision-Induced Dissociation of Polyamidoamine (PAMAM) Dendrimer Ions with Amino, Amidoethanol, and Sodium Carboxylate Surface Groups

Here, we investigate the effect of the structure (generation) and nature of the surface groups of different polyamidoamine (PAMAM) dendrimers on electron-mediated dissociation, either electron capture dissociation (ECD) or electron detachment dissociation (EDD), and compare the fragmentation with that observed in collision-induced dissociation (CID). ECD and EDD of the PAMAM dendrimers resulted...

متن کامل

A mechanistic view of lipid membrane disrupting effect of PAMAM dendrimers.

The effect of 5th generation polyamidoamine (PAMAM G5) dendrimers on multilamellar dipalmitoylphosphocholine (DPPC) vesicles was investigated. PAMAM was added in two different concentrations to the lipids (10(-3) and 10(-2) dendrimer/lipid molar ratios). The thermal behavior of the evolved systems was characterized by DSC; while the structure and the morphology were investigated with small- and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015